Découverte sur les ondes gravitationnelles, Daniel Lellouch (Weizmann, Israël) : « nous entrons dans l’ère de la gravito-astronomie »

LIGO ouvre une nouvelle fenêtre sur l’Univers avec l’observation d’ondes gravitationnelles provenant d’une collision de deux trous noirs. Pour la première fois, des scientifiques ont observé des ondulations de l’espace-temps, appelées ondes gravitationnelles, produites par un événement cataclysmique dans l’Univers lointain atteignant la Terre après un long voyage. Cette découverte confirme une prédiction majeure de la théorie de la relativité générale énoncée par Albert Einstein en 1915 et ouvre une toute nouvelle fenêtre sur le cosmos. Les ondes gravitationnelles portent en elles des informations qui ne peuvent pas être obtenues autrement, concernant à la fois leurs origines extraordinaires (des phénomènes violents dans l’Univers) et la nature de la gravitation.

Simulation de l'évolution des deux trous noirs, juste avant leur fusion, et des ondes gravitationnelles qu'ils produisent. © Max Planck Institute for Gravitational Physics
Simulation de l’évolution des deux trous noirs, juste avant leur fusion, et des ondes gravitationnelles qu’ils produisent. © Max Planck Institute for Gravitational Physics

Le physicien Daniel Lellouch* (Institut Weizmann des Sciences, Israël), a confié à Israël Science Info : « Cette découverte constitue le « dernier chaînon » de la vérification de la théorie de la Relativité Générale, cent ans après sa formulation. La boucle est bouclée : grâce à une technologie remarquable, les expérimentateurs viennent de confirmer de façon directe que gravitation et déformation de l’espace-temps sont deux phénomènes identiques. La recherche ne s’arrêtera pas là : de « découverte », les ondes gravitationnelles vont maintenant acquérir le statut « d’outil ».  Un peu comme la découverte des ondes radio a donné naissance à la radioastronomie, celle des ondes gravitationnelles va engendrer la « gravito-astronomie ». Ceci permettra d’étudier des phénomènes  peu connus, comme la formation des trous noirs et leurs collisions mutuelles. A noter qu’Israël a une longue tradition d’astrophysique théorique, principalement à l’Université hébraïque de Jérusalem, dont un des fondateurs en 1920 fut d’ailleurs Einstein. Parmi les scientifiques les plus connus, citons les Professeurs Tsvi Piran ainsi que Yaakov Beckenstein, récemment décédé. A l’institut Weizmann, à Rehovot, travaille également Moti Milgrom, célèbre pour sa théorie « MOND » qui modifie les lois de la mécanique à très faible accélération ».

La conclusion des physiciens est que les ondes gravitationnelles détectées ont été produites pendant la dernière fraction de seconde précédant la fusion de deux trous noirs en un trou noir unique, plus massif et en rotation sur lui-même. La possibilité d’une telle collision de deux trous noirs avait été prédite, mais ce phénomène n’avait jamais été observé. Ces ondes gravitationnelles ont été détectées le 14 septembre 2015, à 11h51, heure de Paris (9h51 GMT), par les deux détecteurs jumeaux de LIGO (Laser Interferometer Gravitational-wave Observatory) situés aux Etats-Unis – à Livingston, en Louisiane, et Hanford, dans l’Etat de Washington. Les observatoires LIGO sont financés par la National Science Foundation (NSF) ; ils ont été conçus et construits par Caltech et le MIT, qui assurent leur fonctionnement. La découverte, qui fait l’objet d’une publication acceptée par la revue Physical Review Letters, a été réalisée par la collaboration scientifique LIGO (qui inclut la collaboration GEO et l’Australian Consortium for Interferometric Gravitational Astronomy) et la collaboration Virgo, à partir de données provenant des deux détecteurs LIGO. Une centaine de scientifiques travaillant dans six laboratoires associés au CNRS ont contribué à cette découverte, au sein de la collaboration Virgo.

Clin d’œoeil de l’histoire : c’est 100 ans tout juste après la publication de la théorie de la relativité générale d’Einstein, qu’une équipe internationale vient d’en confirmer l’une des prédictions majeures, en réalisant la première détection directe d’ondes gravitationnelles. Cette découverte se double de la première observation de la « valse » finale de deux trous noirs qui finissent par fusionner.

L’analyse des données a permis aux scientifiques des collaborations LIGO et Virgo d’estimer que les deux trous noirs ont fusionné il y a 1.3 milliard  d’années, et avaient des masses d’environ 29 et 36 fois celle du Soleil. La comparaison des temps d’arrivée des ondes gravitationnelles dans les deux détecteurs (7 millisecondes d’écart) et l’étude des caractéristiques des signaux mesurés par les collaborations LIGO et Virgo ont montré que la source de ces ondes gravitationnelles était probablement située dans l’hémisphère sud. Une localisation plus précise aurait nécessité des détecteurs supplémentaires. L’entrée en service d’Advanced Virgo fin 2016 permettra justement cela.

Selon la théorie de la relativité générale, un couple de trous noirs en orbite l’un autour de l’autre perd de l’énergie sous forme d’ondes gravitationnelles. Les deux astres se rapprochent lentement, un phénomène qui peut durer des milliards d’années avant de s’accélérer brusquement. En une fraction de seconde, les deux trous noirs entrent alors en collision à une vitesse de l’ordre de la moitié de celle de la lumière et fusionnent en un trou noir unique. Celui-ci est plus léger que la somme des deux trous noirs initiaux car une partie de leur masse (ici, l’équivalent de 3 soleils, soit une énergie colossale) s’est convertie en ondes gravitationnelles selon la célèbre formule d’Einstein E=mc2. C’est cette bouffée d’ondes gravitationnelles que les collaborations LIGO et Virgo ont observée.

Une preuve indirecte de l’existence des ondes gravitationnelles avait été fournie par l’étude de l’objet PSR 1913+16, découvert en 1974 par Russel Hulse et Joseph Taylor – lauréats du prix Nobel de physique 1993. PSR 1913+16 est un système binaire composé d’un pulsar en orbite autour d’une étoile à neutrons. En étudiant sur trois décennies l’orbite du pulsar, Joseph Taylor et Joel Weisberg ont montré qu’elle diminuait très lentement et que cette évolution correspondait exactement à celle attendue dans le cas où le système perdait de l’énergie sous la forme d’ondes gravitationnelles. La collision entre les deux astres composants le système PSR 1913+16 est attendue dans environ… 300 millions d’années ! Grâce à leur découverte, les collaborations LIGO et Virgo ont pu observer directement le signal émis à la toute fin de l’évolution d’un autre système binaire, formé de deux trous noirs, lorsqu’ils ont fusionné en un trou noir unique.

Détecter un phénomène aussi insaisissable1 que les ondes gravitationnelles aura demandé plus de 50 ans d’efforts de par le monde dans la conception de détecteurs de plus en plus sensibles. Aujourd’hui, par cette première détection directe, les collaborations LIGO et Virgo ouvrent une nouvelle ère pour l’astronomie : les ondes gravitationnelles sont un nouveau messager du cosmos, et le seul qu’émettent certains objets astrophysiques, comme les trous noirs.

Autour de LIGO s’est constituée la collaboration scientifique LIGO (LIGO Scientific Collaboration, LSC), un groupe de plus de 1000 scientifiques travaillant dans des universités aux Etats-Unis et dans 14 autres pays. Au sein de la LSC, plus de 90 universités et instituts de recherche réalisent des développements technologiques pour les détecteurs et analysent les données collectées. La collaboration inclut environ 250 étudiants qui apportent une contribution significative. Le réseau de détecteurs de la LSC comporte les interféromètres LIGO et le détecteur GEO600. L’équipe GEO comprend des chercheurs du Max Planck Institute for Gravitational Physics (Albert Einstein Institute, AEI), de Leibniz Universität Hannover (en Allemagne), ainsi que des partenaires dans les universités de Glasgow, Cardiff,  Birmingham, et d’autres universités du Royaume-Uni, et à l’Université des îles Baléares en Espagne.

Les chercheurs travaillant sur Virgo sont regroupés au sein de la collaboration du même nom, comprenant plus de 250 physiciens, ingénieurs et techniciens appartenant à 19 laboratoires européens dont 6 au Centre national de la recherche scientifique (CNRS) en France, 8 à l’Istituto Nazionale di Fisica Nucleare (INFN) en Italie et 2 à Nikhef aux Pays-Bas. Les autres laboratoires sont Wigner RCP en Hongrie, le groupe POLGRAW en Pologne, et EGO (European Gravitational Observatory), près de Pise, en Italie, où est implanté l’interféromètre Virgo.

A l’origine, LIGO a été proposé comme un moyen de détecter ces ondes gravitationnelles dans les années 1980 par Rainer Weiss, professeur émérite de physique au MIT, Kip Thorne, professeur de physique théorique émérite à Caltech (chaire Richard P. Feynman) et Ronald Drever, professeur de physique émérite à Caltech. Virgo est né grâce aux idées visionnaires d’Alain Brillet et d’Adalberto Giazotto. Le détecteur a été conçu grâce à des technologies innovantes, étendant sa sensibilité dans la gamme des basses fréquences. La construction a commencé en 1994 et a été financée par le CNRS et l’INFN ; depuis 2007, Virgo et LIGO ont partagé et analysé en commun les données collectées par tous les interféromètres du réseau international. Après le début des travaux de mise à niveau de LIGO, Virgo a continué à fonctionner jusqu’en 2011.

Le projet Advanced Virgo, financé par le CNRS, l’INFN et Nikhef, a ensuite été lancé. Le nouveau détecteur sera opérationnel d’ici la fin de l’année. En outre, d’autres organismes et universités des 5 pays européens de la collaboration Virgo contribuent à la fois à Advanced Virgo et à la découverte annoncée aujourd’hui.

En s’engageant depuis plus de vingt ans dans la réalisation de Virgo puis d’Advanced Virgo, la France s’est placée en première ligne pour la recherche des ondes gravitationnelles. Le partenariat noué avec LIGO pour l’exploitation des instruments LIGO et Virgo, qui se traduit par la participation directe de laboratoires français aussi bien à l’analyse des données qu’à la rédaction et à la validation des publications scientifiques, est le prolongement de collaborations techniques très anciennes avec LIGO, ayant conduit par exemple à la réalisation du traitement des surfaces des miroirs de LIGO à Villeurbanne. La publication scientifique des collaborations LIGO et Virgo annonçant leur découverte est cosignée par 75 scientifiques français provenant de six équipes du CNRS et des universités associées :
–    le laboratoire Astroparticule et cosmologie (CNRS/Université Paris Diderot/CEA/Observatoire de Paris), à Paris ;
–    le laboratoire Astrophysique relativiste, théories, expériences, métrologie, instrumentation, signaux (CNRS/Observatoire de la Côte d’Azur/Université Nice Sophia Antipolis), à Nice ;
–    le Laboratoire de l’accélérateur linéaire (CNRS/Université Paris-Sud), à Orsay ;
–    le Laboratoire d’Annecy-le-Vieux de physique des particules (CNRS/Université Savoie Mont Blanc), à Annecy-le-Vieux ;
–    le Laboratoire Kastler Brossel (CNRS/UPMC/ENS/Collège de France), à Paris ;
–    le Laboratoire des matériaux avancés (CNRS), à Villeurbanne.

La découverte a été rendue possible par les capacités accrues d’Advanced LIGO, une version grandement améliorée qui accroit la sensibilité des instruments par rapport à la première génération des détecteurs LIGO. Elle a permis une augmentation notable du volume d’Univers sondé – et la découverte des ondes gravitationnelles dès sa première campagne d’observations. La National Science Foundation des Etats-Unis a financé la plus grande partie d’Advanced LIGO. Des agences de financement allemande (Max Planck Society), britannique (Science and Technology Facilities Council, STFC) et australienne (Australian Research Council) ont aussi contribué de manière significative au projet. Plusieurs des technologies clés qui ont permis d’améliorer très nettement la sensibilité d’Advanced LIGO ont été développées et testées par la collaboration germano-britannique GEO. Des ressources de calcul significatives ont été allouées au projet par le groupe de calcul Atlas de l’AEI à Hanovre, le laboratoire LIGO, l’université de Syracuse et l’Université du Wisconsin à Milwaukee. Plusieurs universités ont conçu, construit et testé des composants clés d’Advanced LIGO : l’université nationale australienne, l’université d’Adélaïde, l’université de Floride, l’université Stanford, l’université Columbia de New York et l’université d’Etat de Louisiane.

Publication in Physical Review Letters

* Daniel Lelouch est membre du comité scientifique d’Israël Science Info

– Lors de l’événement du 14 septembre 2015, la longueur des bras des interféromètres a varié d’un cent-millionième de la taille d’un atome.

Pour prolonger cet événement : vendredi 12 février, des chercheurs français du consortium LIGO/Virgo donnent rendez-vous aux curieux sur Twitter de 13h30 à 14h pour répondre aux questions sur la détection exceptionnelle des ondes gravitationnelles. Ils attendent dès maintenant les questions des Twittos avec #AskLVC !

http://www.israelscienceinfo.com/physique/les-ondes-gravitationnelles-detectees-100-ans-apres-la-prediction-dalbert-einstein/

 

Suivez-nous et partagez

RSS
Twitter
Visit Us
Follow Me

Soyez le premier à commenter

Poster un Commentaire

Votre adresse de messagerie ne sera pas publiée.


*